Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
2.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36376602

RESUMEN

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura/métodos , Plantas
3.
Nat Commun ; 12(1): 4431, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290234

RESUMEN

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Asunto(s)
Agricultura/métodos , Biodiversidad , Pradera , Fósforo/metabolismo , Agricultura/economía , Biomasa , Fertilizantes/economía , Análisis de Clases Latentes , Micorrizas/clasificación , Micorrizas/metabolismo , Fósforo/análisis , Fósforo/economía , Plantas/clasificación , Plantas/metabolismo , Plantas/microbiología , Suelo/química , Microbiología del Suelo
4.
Nat Commun ; 12(1): 3918, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168127

RESUMEN

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Microbiología del Suelo , Agricultura , Animales , Europa (Continente) , Cadena Alimentaria , Bosques , Pradera , Herbivoria , Insectos
5.
Landsc Ecol ; 36(1): 281-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505122

RESUMEN

CONTEXT: Global pollinator decline has motivated much research to understand the underlying mechanisms. Among the multiple pressures threatening pollinators, habitat loss has been suggested as a key-contributing factor. While habitat destruction is often associated with immediate negative impacts, pollinators can also exhibit delayed responses over time. OBJECTIVES: We used a trait-based approach to investigate how past and current land use at both local and landscape levels impact plant and wild bee communities in grasslands through a functional lens. METHODS: We measured flower and bee morphological traits that mediate plant-bee trophic linkage in 66 grasslands. Using an extensive database of 20 years of land-use records, we tested the legacy effects of the landscape-level conversion of grassland to crop on flower and bee trait diversity. RESULTS: Land-use history was a strong driver of flower and bee trait diversity in grasslands. Particularly, bee trait diversity was lower in landscapes where much of the land was converted from grassland to crop long ago. Bee trait diversity was also strongly driven by plant trait diversity computed with flower traits. However, this relationship was not observed in landscapes with a long history of grassland-to-crop conversion. The effects of land-use history on bee communities were as strong as those of current land use, such as grassland or mass-flowering crop cover in the landscape. CONCLUSIONS: Habitat loss that occurred long ago in agricultural landscapes alters the relationship between plants and bees over time. The retention of permanent grassland sanctuaries within intensive agricultural landscapes can offset bee decline.

6.
Nat Ecol Evol ; 4(11): 1485-1494, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839545

RESUMEN

A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity-ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity-ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity-ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.


Asunto(s)
Biodiversidad , Ecosistema , Alemania , Filogenia , Plantas
7.
Proc Natl Acad Sci U S A ; 117(3): 1573-1579, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31907310

RESUMEN

Land-use change is a major driver of biodiversity loss worldwide. Although biodiversity often shows a delayed response to land-use change, previous studies have typically focused on a narrow range of current landscape factors and have largely ignored the role of land-use history in shaping plant and animal communities and their functional characteristics. Here, we used a unique database of 220,000 land-use records to investigate how 20-y of land-use changes have affected functional diversity across multiple trophic groups (primary producers, mutualists, herbivores, invertebrate predators, and vertebrate predators) in 75 grassland fields with a broad range of land-use histories. The effects of land-use history on multitrophic trait diversity were as strong as other drivers known to impact biodiversity, e.g., grassland management and current landscape composition. The diversity of animal mobility and resource-acquisition traits was lower in landscapes where much of the land had been historically converted from grassland to crop. In contrast, functional biodiversity was higher in landscapes containing old permanent grasslands, most likely because they offer a stable and high-quality habitat refuge for species with low mobility and specialized feeding niches. Our study shows that grassland-to-crop conversion has long-lasting impacts on the functional biodiversity of agricultural ecosystems. Accordingly, land-use legacy effects must be considered in conservation programs aiming to protect agricultural biodiversity. In particular, the retention of permanent grassland sanctuaries within intensive landscapes may offset ecological debts.


Asunto(s)
Biodiversidad , Ecosistema , Pradera , Agricultura , Animales , Conservación de los Recursos Naturales , Bases de Datos Factuales , Ecología , Herbivoria/clasificación , Invertebrados/clasificación , Plantas/clasificación , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...